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Gauge and Backlund Transformations for the
Generalized Sine-Gordon Equation and
Its n-Dependent Modified Equation

Yu-kun Zheng' and W. L. Chan'

Received October 13, 1989

We study the generalized sine-Gordon hierarchy and its associated n-dependent
modified sine-Gordon hierarchy. Two Bécklund transformations for these two
families are constructed. One of them is a generalization of the Backlund
transformations of Wadati et al. and the other one is new. Gauge transformations
of a relevant AKNS system are employed to reduce the integration of these
equations via the Bécklund transformations to quadratures. Three generations
of explicit solutions of the sine-Gordon equation are presented.

1. INTRODUCTION

In a previous work (Zheng and Chan, 1988) we developed a gauge-
Bicklund transformation technique for constructing families of solutions
to the hierarchy of the Korteweg-de Vries equation (KdVE). This method
was extended to the case for the hierarchy of the modified KAdVE (Zheng
and Chan, in press). In this paper we extend the method further to include
the generalized sine-Gordon hierarchy:

z, ={(cos zI cos z+sin z I sin z) I} sin z, m=1 (1.1)
Z, =sin z, : m=0 (1.2)

in which I is the integration operator.

This hierarchy was introduced in Sasaki and Bullough (1981), where
polynomial and nonlocal conserved Hamiltonian densities were deduced
from a geometric approach. Here we derive an expression for the equation
of motion for an arbitrary member of the generalized sine-Gordon equation
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1076 Zheng and Chan

{(GSGE) by a different method which leads us to the introduction of an
associated family of nonlinear evolution equations: the z-dependent
modified GSGE (n-mGSGE). The solutions of the two hierarchies are in
one-to-one correspondence and the situation is analogous to the KdVE and
n-mKdVE pair.

The paper is organized as follows. In Section 2 the GSGE is derived,
and in Section 3 a Bécklund transformation (BT) for it is established. In
order to implement this BT to obtain explicit solutions, we consider in
Section 4 gauge transformations (GT) of the relevant AKNS system in the
spirit of our previous work (Zheng and Chan, 1988, and in press). Section
5 introduces the new 7-mGSGE and its BT. Finally, in Section 6 we
summarize our construction procedures, and three generations of solutions
for the sine-Gordon equation are presented to illustrate how the integration
of this equation is reduced to quadratures.

2. GENERALIZED SINE-GORDON EQUATION

It is well known that the SGE (1.2), as a condition of integrability, can
be derived from the following AKNS system (Ablowitz and Segur, 1981):

dv=Qv¥ (2.1)
where ¥ is a column vector function of x and ¢,
¢'1>
V= ( 2.2)
¥,
and
Q=Pdx+Qdt (2.3)
P=( nod ) (2.4)
-q9 M
7 is a real parameter, independent of x and ¢ 2.5)
q is a real function of x and ¢ (2.6)
A B

= 2.7
o=(4 %) (27)
A is a functional of ¢ (2.8)

A 1 1 /A
B=——"+—qA+——(—") 2.9
29 7 dn\q/x (29)

A, 1 1 (A,
C="2——gA—— (—-—) (2.10)

29 7 4n\q/x
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First we cite some useful results about this system (Zheng and Chan, to
appear).

(C1) A necessary and sufficient condition for the integrability of the
AKNS system (2.1) is that A and g satisfy the following equation:

A, 1 1 /A,
g +n—=——( A)x-——(—) =0 (2.11)
g T T\ )
(C2) There exists a complex gauge
i —
G, = ("’ o ) (2.12)
1 i
which carries the following transformation:
G: ¥->0=G¥ (2.13)
with
_ - +
® = (‘Pl) _ ( 2 Q‘.ffz qu){’l) (2.14)
) Un+iv,

and & satisfies a complex AKNS system:

-ié —né 1€ —né —ué)
Y i o~ M @ dt 2.15
( C 3G+ nC 213)
where
u=ig.+q* (the complex Muira transformation) (2.16)
é= _1 RA (2.17)
27q
R=iD+2 =2 (2.18)
- % 9x )

(C3) A necessary and sufficient condition for the integrability of the
AKNS system (2.15) is that C and u satisfy the following equation:
U+ +2(u—n)C+ul=0 (2.19)

(C4) Under the condition that u# and q satisfy (2.16), the expressions
on the left-hand side of equations (2.11) and (2.19) possess the following
relationship:

u,+3C A 2u—- )+ uC

A, 1 1 /A
=R{ R e Y A)x————(—") } (2.20)
1 7'q ] 4 4N\ q/x
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This identity establishes a relation between the two equations (2.11) and
(2.19).

Now we choose A in (2.11) to be a polynomial of "

A= ,ZO Ap T (2.21)
iz

Substituting (2.21) into (2.11) and equating to zero all of the coefficients

of the power of 7!, we get
A
[1(_o> +qu] ~0 (2.22)
4\ q /x x
I(ij) ] Aj—lx .
(22} 494, | =82 j=1,2,...n (2.23)
[4 q/x "l q
A
qt + X = 0 (2.24)
q
Denote
G=D(D+4¢D™q) (2.25)

Then (2.23) can be rewritten as
Gq'DA;=q'DA;.,, j=1,2,...,n (2.26)

Using the inverse operator G~ of G in (2.25), we get the following recursion
formula:

A;=D'qG7'q7'DA,_,, j=12,...,n (2.27)
Thus, to each solution A, of equation (2.22), we have
A;=D7'qG7q7'DA,, j=12,...,n (2.28)

Taking j=n in (2.28) and substituting it into (2.24), we get the following
evolution equation:

g+G g 'DA,=0, n=0,1,2,... (2.29)

This is a set of integrodifferential equations, since G™" involves the integral
operator. To obtain the functional A,, we introduce a new function

z=2 J' gdx, or q=13z (2.30)
and assume that

Ap= Ao(z J qu) = Aq(2) (2.31)
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By (2.22), (2.30), and (2.31), we have
0=3cos z
Substituting (2.30) and (2.32) into (2.28) and (2.29) we get
, =—3D;'G7sinz, j=1,2,...,n
z2,— G "sinz=0, n=0,1,2,...
where

G=3Dz(D,+D;")

d
D,=—, D;1=j-dz
0z

G ' =(cos zD}" cos z+sin zD." sin z) D"

(Sasaki and Bullough, 1981).
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(2.32)

(2.33)
(2.34)

(2.35)

(2.36)

For n=0, (2.34) reduces to the SGE (1.2); therefore we call (2.34) the

generalized sine-Gordon equation {GSGE).
Inserting (2.33) into (2.21), (2.9), and (2.10) gives

12 . .
A=—-=7Y D;'G7sinzn 2"
4,2

1 ; o
B=-=Y G7sinzy "1
4>

12 i i
___E z D IG j+1 sinzn 2(n—j+1)
j=0

G sin z p A1

™=

C=-

4]

il

1

4;

—i—l i D 'G 7t sin z 72D
2j=0

By the above results, we have the following.

(2.37)

(2.38)

(2.39)

Theorem 1. Under the condition that g and z be connected by (2.30)
and A, B, and C take the values (2.37)-(2.39), a necessary and sufficient
condition for the integrability of the AKNS system (2.1) is that z satisfies

the GSGE (2.34).
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3. BACKLUND TRANSFORMATION FOR THE GSGE
Wadati et al. (1975) constructed a BT for the SGE (1.2) which reads

-1 _‘/2
¥

where ¢, and ¥, are solutions of the AKNS system (2.1)-(2.10) correspond-
ing to the solution z of the SGE (1.1). We now show that (3.1) is also valid
for the GSGE (2.34).

Substituting (2.28) into (2.21) gives

z'=z+4tan (3.1)

A= io D™'qG7q 7 DAy X" (3.2)
=
Denote
F=iD*+u+iu D™’ (3.3)
It is easy to check that the commutative relations
Dg'R=Rq™'D (3.4)
RG=FR or RG'=F'R (3.5)

hold. Substituting (3.2) into (2.17) and using (3.4) and (3.5), we have
C =73 D'FIDCyn 22 (3.6)
i=0
where, by (2.32)
C0=_%q_1RA0=—'%e-iz (3.7)

By virtue of (2.22), (2.25), (3.5), and (3.4), we find that the C, in (3.7)
satisfies the following equation:

FDC,=90 (3.8)

Now inserting (3.6) into (2.19) and using (3.8), we obtain the following
equation:

u,—2F"DCy=0 (3.9)

By (2.30) and (2.16), z is in fact a functional of u, and so is C, by (3.7).
Thus, by (3.3), we have the following result.

Theorem 2. A necessary and §ufﬁcient condition for the integrability
of the AKNS system (2.15) with C in (3.6) is that the function u satisfies
equation (3.9).
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Referring to (2.19), (3.9), (2.11), (2.34), and (2.20), we get the following
equality:

u,—~2F""DCy=R(z,— G "sin z) (3.10)

Wote that R is a complex operator; the equality (3.10) implies the following
result.

Theorem 3. Under the condition that u and z are connected by (2.16)
and (2.30), a necessary and sufficient condition of u satisfying equation
(3.9) is that z satisfy equation (2.34).

Now, assume that z is a known solution of the GSGE (2.34), and ¢,
and ¢, are the corresponding solutions of the AKNS system (2.1)-(2.7)
with g, A, B, and C given in (2.30) and (2.37)-(2.39). Then, by (2.16),
(2.17), and (2.14), we get u, (:‘, and ®; they satisfy the AKNS system (2.15),
or in component form

Qix = NPT UP; (3.11)
Pax = =1~ NP2 (3.12)
o1 ==GC+1C)p1 = GCe+ nCF+uC)ep, (3.13)
02 =Co1+(GC+nC)o, (3.14)
Define
p=-0_ P (3.15)
P2 P2
By (3.15) and (3.11)-(3.14), we have
u=n"—-v,—0° (3.16)
v, =36 —0C), (3.17)
Denote
R*=D-2v (3.18)
R =-D-2v (3.19)
Then (3.16) gives
u,=R v, (3.20)
u, =Ry, (3.21)

Substituting (3.6) into (3.17) and using (3.18), we get

v, =% Y DR*D'F7DCyn™ "2 (3.22)

i=0
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From (3.9) and (3.21) we have
DCy=iF"R v, (3.23)
Substituting (3.23) into (3.22) to eliminate DC,, we obtain

v, =i (éo DR+D“F"—fR‘n—2<"—f>‘2) v, (3.24)
Denote
S=iD*+7n*—v*—0,D ' (3.25)
Then we have
FR™ =R"S (3.26)
DR*D'R™ =-4(S-7?) (3.27)

Applying (3.25)-(3.27) to (3.24), we obtain an evolution equation in compact
form:

Sy, =0 (3.28)
Thus we arrive at the following result.

Theorem 4. Let u be a solution of equation (3.9), and ¢, and ¢, be
the corresponding solutions of (3.11)-(3.14); then the function v defined
by (3.15) is a solution of equation (3.28).

Using the relation between u and v of (3.16) and by direct calculation,
one finds that equations (2.19) and (3.17) are connected by the following
relation:

U +3Co +2(u— )G+ u,C =R [5,- 36~ 08),]  (3.29)
This implies the following equality between equations (3.9) and (3.28):
u,—2F "DC,=R(§"'v,) (3.30)
We state this result in a theorem.

Theorem 5. Whenever v is a solution of equation (3.28), the function
u determined by v in (3.16) is a solution of equation (3.9).

Note that the operator S defined in (3.25) is even with respect to v.
Therefore, equation {3.28) is odd with respect to v. Thus, equation (3.28)
possesses with every solution v another solution —v. But then, by substitut-
ing —v into (3.16) and by Theorem 3, we obtain another solution u’ of
equation (3.9):

u'=n*+uv,—0? (3.31)
Subtracting (3.6) from (3.31), we get
w=u+2v, (3.32)
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This is a BT for equation (3.9). According to Theorem 3, we can expect
that it contains a new solution of equation (2.34), provide the right-hand
side of (3.32) possesses the form of a complex Miura transformation (2.16).
We want to show indeed this is the case.

Denote

igi+gq*=u'=u+2v, (3.33)
where ¢’ and g* are two real functions. One needs to show that the following
equality holds:

g*=(q)’ (3.34)

Substituting the complex function ¢, in (2.14) into (3.15) and then (2.16)
and (3.15) into (3.33), we have

iq.+q*=ig.+q°+2 [1n(¢§+ $3)*+itan™ %] (3.35)
Tdxx
Equating the imaginary part and the real part of the two sides of
equality (3.35), respectively, gives

illz
q'= q+2<tan‘l ——) (3.36)
¢'1 x
g* =g’ +2[In(¢yi+v3)" "] (3.37)
Using (2.1) and (2.4), we find that (3.36) and (3.37) are simplified to
Any i,
=g 3.38
R (3:38)
4n¢1¢2)2
Felgt—3 (3.39
7= T )

(3.38) and (3.39) indicate that equality (3.34) holds. Therefore (3.33) can
be rewritten in the following form of a complex Miura transformation:

u'=iq+q” (3.40)
where ¢’ is the function defined in (3.36). Thus, by Theorem 3, the function

z’=2j q' dx (3.41)

is a solution of the GSGE (2.34). Substituting (2.30) into (3.36) and then
(3.36) into (3.41), we get (3.1). This means that (3.1) is a BT for the GSGE
(2.34). We state this in the following result.

Theorem 6. Assume that z is a solution of the GSGE (2.34) and y,
and ¢, are the corresponding solutions of the AKNS system (2.1)-(2.7)
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with g, A, B, and C given in (2.30) and (2.37)-(2.39); then the function z’
defined in (3.1) is a new solution of the GSGE (2.34), that is, (3.1) is a BT
for the GSGE (2.34).

4. GAUGE TRANSFORMATIONS FOR AKNS SYSTEMS

The application of the BT (3.1) for finding new solution of the GSGE
(2.34) requires the solutions y, and ¢, of the AKNS system (2.1). In this
section, we introduce an easy method to obtain a new solution of (2.1) from
a known solution, that is, the gauge transformation (GT) method for the
AKNS system (2.1).

To the solution z' in (3.1) of the GSGE (2.34), by Theorem 1, there is
a corresponding integrable AKNS system

dy’ =Q"¥ (4.1)
where W' is a column vector function of x and ¢,
t/fi)
\If’=( , (4.2)
¥
and
Q'=P dx+Q dt (4.3)
P’=< no ) (4.4)
-q -7
7 kept the same as (2.5) (4.5)
q' =32% (4.6)
, (A B
Q - (Cr _AI) (4.7)
A'=-1Y D;'G7sinz 727! (4.8)

-3 ‘Zo D' G sin 2’ 7D (4.9)
=

n
C'=-%Y G7sinz p~ 27!
j=0

+3 Y D7'G sin ! g 20D (4.10)

Jj=0
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Referring to (2.13)-(2.19), there exists a complex GT

G;: V-9 =GV (4.11)
with
. ’_2 — 7
G3=('q K ,q) (4.12)
1 i
and
i _ ' ! il
q),:(‘i’ll) =( 2y ’ ql{’zl lq(/’l) (4.13)
P2 Yyt i

such that @’ satisfies the following complex AKNS system:

dq>'=( o )qy dx
+(~%é;—né’ ~1CL—nC.—ul’

A A A d’ dt 4.14
¢ 1 +nl ) (4.14)

where u’ is a solution of equation (3.9) defined in (3.31) or (3.32), and ol
is connected to g’ and A’ as follows:

- 1 )
C'=———R'A (R'=ia—;+2q'> (4.15)

Now we have two AKNS systems (2.15) and (4.14). In Zheng and
Chan (1988) we point out that these two AKNS systems possess a GT under
the condition that the function v defined in (3.15) satisfies an odd evolution
equation. In the present case, this condition is also satisfied, namely,
equation (3.28). Therefore, we can apply those results to (2.15) and (4.14).
We cite them in the following.

There exists a GT

G,: ¢->9'=G,0 (4.16)
which transforms (2.15) into (4.14), where G, is a 2x2 matrix as follows:

__1_(a+(1;~—v)c (p+v)a—b+(n*—vc—(n—v)d
B> —-c —(p+v)c+d

The notations in (4.17) have the following meanings. 7 and v have been
defined in (2.5) and (3.15). Denote

®2=@5(xo, 1) (4.18)

Gy= ) (4.17)
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B=¢ exp(J v dx) (4.19)
B= J B’dx (4.20)
B'= I B2 dx (4.21)
Then,
a=B*a;—boB") (4.22)
b= byB* (4.23)
C = Bz(aoé - boéﬁ'+ Co" doé) (4.24)
d=b,B+d, (4.25)
where
ao = al + b]A (4'26)
bo=b, (4.27)
co=—a,A'—bAA + ¢, +d,A (4.28)
do = "b]Al+ dl (4.29)
t
A= J (99 2Clu(xo, 1), 1] dt (4.30)
o
A'=J (9*Cu'(xo, 1), 1] dt (4.31)
1

0

and a,, b,, ¢;, and d, are some arbitrary constants satisfying the following
condition:

aldl - blcl = 1 (4.32)
Let
G =G3;'G,G, (4.33)

where G,, G,, and G, are defined in (2.12), (4.17), and (4.12), respectively.
Thus, by (2.13), (4.16), and (4.11), (4.33) is a GT

G: VY->V'=Gv (4.34)
which transforms the AKNS systems (2.1) into (4.1).
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5. n-DEPENDENT MODIFIED GSGE AND ITS
BACKLUND TRANSFORMATION

We now apply the GT (4.34) to derive a transformation for the quantity
Y/ ¥y in the BT (3.1).
Denote

w=io/d, W=/ ¢] (5.1)
Then the BT (3.1) can be expressed in terms of w:
Z’=z+4tan"'w (5.2)
Using (4.13), (4.16), (4.17), (3.15), (4.19), and (2.14), we have
1
[

=%[—c%—(n+v)c+d]

=¢; '[e(n+v)~(n+v)c+d]
=leo| (1 —itr2)d (5.3)

Let © and » be the real and imaginary parts of the complex function d
defined in (4.25), respectively:

Yitigs=er=—{—cp,—[(n+v)c—d]p,}

d=u+iv (5.4)
Substituting (5.4) into (5.3), we get
Wi+ i = oo [(ap+ o) +i(dhr = iop)] (5.5)
Denote
w=v/u (5.6)

Then by (5.1), (5.5), and (5.6), we obtain

,=¢’1V’_‘/’2I-‘«= W=—w
Yoty 1+ww

(5.7)

(5.7) is the transformation formula for the function w defined in (5.1).

The function w is in fact a solution of another evolution equation. We
now derive this equation. Taking the derivative with respect to x in the first
equality of (5.1) and using (2.1)-(2.7), we get

Wy =—=2nw—q(1+w? (5.8)
Solving for ¢ from (5.8) gives
g =—(w+27w)/(1+w?) (5.9)
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Again taking the derivative with respect to ¢ in the first equality of (5.1)
and using (2.1)-(2.7), we get

w,=—2Aw—Bw?+C (5.10)
Substituting (2.37)~(2.39) into (5.10) and using (2.34) and (2.30) gives

=3 z [(4wD'g+w?~1)n+2(w*+1)D'G]

X G g A g (5.11)

where the function g by (5.9), is a functional of w. Therefore (5.11) is a
nonlinear evolution equation about w with n as a parameter, and (5.7) is
a BT for it. We call (5.11) the n-dependent modified GSGE (7-mGSGE).
Note that when n =0, (2.34), (2.30), and (2.25) imply

Gq,=0 (5.12)
Therefore, for n =0, (5.11) together with (5.12) gives
w, =3(4wD g+ w’—1)n"q, (5.13)

The right-hand side of this equation can be explicitly expressed in terms
of w. By (2.30) and (1.2) we have

w, = —in"'[2w cos z + (1 — w?) sin z] (5.14)
Using the identities
2w=(1+w?) sin 2(tan"' w) (5.15)
1-w”=(1+w?) cos 2(tan™" w) (5.16)
we find that (5.14) becomes
5 w,=—in"'(1+w?)sin(z+2tan"' w) (5.17)

On the other hand, (2.30) and (5.9) give

- -1, w
z=-2tan" w 4njl+w2dx (5.18)
Then, by substituting (5.18) into (5.17), we get the final form of the 7-
mGSGE (5.11) for n=0 as follows:

Y ix (5.19)

1_-1 2 .
=3 1+w")sin4
an ) si "J1+w
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6. SUMMARY AND EXAMPLE

By the BTs (5.2) and (5.7) and the GT (4.34) we can now start from
a known solution z, of the GSGE (2.34) to obtain a hierarchy of solutions
of that equation,

Z1sZoy 23y ey Zhponn (6.1)
a hierarchy of solutions of the corresponding AKNS system (2.1),
Y, ¥, ¥,,...,¥,,... (6.2)
and a hierarchy of solutions of the n-mGSGE (5.11),
Wi, Wo, Wi, oo, W, .t (6.3)

without solving any differential equation except for ¥, in the following

manner:
Z) > Zp P I3 D Ty —D

l/w,/ l// l/w/ | 6

¥, —Y,—Y¥;—

Example. We now use the above results to obtain solutions of the
GSGE (2.34) for n =0, that is, the SGE (1.2):

z,=sinz {6.5)

from a known solution up to the third generation.
Put n=0 in (2.37)-(2.39); we have

A=in"'cosz (6.6)
B=-in"'sinz (6.7)
=—in"'sinz (6.8)

Substituting (2.30) and (6.6)-(6.8) into (2.1)~(2.7), we get the corresponding
AKNS system,

1 i1 | P

3Zy i cosz -3 sin z

dqf=( K )\Ifdx+( 4 _co o )\Ifdt (6.9)
—5Z, —7 ~zm sinz 3m cosz

Equation (6.5) possesses a trivial solution

z,=2mw (6.10)
where m is an arbitrary integer. Substituting (6.10) into (6.9), we have
1 0 1
d¥ = v =qgx+—1 6.11
(0 _1> ¢, E=nx an (6.11)
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Solving (6.11), we get the first generation of solution of the AKNS system

(6.9),
et 0

where ¥, is a constant column vector. Taking

1
=) @

v=()=(% 619

Substituting (6.14) into (5.1), we get

= —!& =
¥

This is the first generation of solutions of the n-mSGE (5.19). Now, by the

BT (5.2) of the GSGE (2.34) and (6.15), we get the second generation of
solutions of (2.34),

then (6.12) gives

W, e % (6.15)

z,=2mm+4tan"" exp(—2¢) (6.16)

To obtain the subsequent generation of solutions, we use formuia (5.7).
We must calculate the w first, or by (5.6) and (5.4), we have to calculate
the complex function d defined in (4.25). By (4.25), (4.27), and (4.29) we
have

d=b,(B-A)+4, (6.17)
Referring to (4.20), (4.19), (4.18), (3.15), and (2.14), we get
B= J (Y + i) dx (6.18)
Inserting (6.14) into (6.18) gives
B= 1~ '(cosh 2& ~ cosh 2&,) + 2i(x — x,) (6.19)
where
§0= 'r]x0+%17_1t (6.20)

The function A’ in (6.17) is defined by (4.31). By (4.15), (3.41), and
(6.6), we have

Clu'(xo, 1), 11=C'(x = x0) = — 12 exp(—izz0) (6.21)
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where 2z is the value of function (6.16) at the point x,. Substituting (6.12)
into (4.31) and using {4.18), after simplification, we get
A'=—5"[cosh 2¢,— cosh 2épg — 2i(£6— £0)] (6.22)
where
£oo=NXo+in 7t (6.23)
Applying (6.19) and (6.22) to (6.17) gives
d =by;n " {cosh 2¢& —cosh 2&50+2i[n(x —xo) —in ' (t— 1)} +d, (6.24)
We choose the constants b, and d, to satisfy the relation

dl = b]'f]—l COSh 2500 (6.25)

and make the corresponding choice in (4.32) simultaneously for a, and c;,.
Thus, by (6.25), (6.24), (5.4), and (5.6), we obtain

2[n(x =x0) —am (1 —1,)]

= 6.26
it cosh 2¢ ( )
Note that (5.7) can be rewritten in the following equivalent form:
w'=tan(tan™' w—tan"" w) (6.27)

Substituting (6.15) and (6.26) into (6.27), we get the second generation of
solutions for the 7»-mSGE (5.19),

1 2[m(x —x0) —an (1= 1)]
cosh 2¢

w, =tan {tan —tan”! exp(—2§)} (6.28)

Applying (6.28) to (5.2), we arrive at the desired third generation of solutions
of the SGE (6.5),

L 2 (x = x0) —3m (1~ 1)]
cosh 2¢

zy=2mm +4 tan (6.29)
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